
 
 
 

Further Particulars – A146 
 

CHANGE 

Enabling Innovation in the Internet Architecture through 

Flexible Flow-Processing Extensions  

 
School of Computing and Communications 

Lancaster University 
                                    
 

1 Consortium 

CHANGE is an EU FP7 project whose consortium comprises 11 partners: Eurescom (DE), 
NEC Europe Ltd. (UK), Deutsche Telekom (DE), University College London (UK), Lancaster 
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1 Concept 

The Internet has grown over the last twenty years to the point where it plays a crucial role 
in today’s society and business.  By almost every measure, the Internet is a great success.  It 
interconnects over a billion people, running a wide range of applications, with new ones 
appearing regularly that take the world by storm.  Indeed the Internet is now displacing 
more mature technologies such as the circuit switched telephone network and conventional 
television distribution.  Quite simply, it does not make economic sense to provide parallel 
infrastructure for uses such as telephony that have effectively become “niche” applications; 
instead, their traffic is now being carried on the same general purpose packet switched 
network as “data” traffic such as email and the web.   

It is this great generality that is the Internet’s main advantage.  It can be argued that the 
Internet doesn’t do any single task terribly well, but it does everything well enough.  And in 
economic terms, “well enough” is what actually matters.  The problem though is that the 
Internet doesn’t really do everything well enough.  It is more true to say that the Internet 
provides 80% of the functionality for 20% of the cost.  The limitations are well-known: the 
Internet does not provide predictable quality of service, and does not provide a sufficiently 
robust and secure infrastructure for critical applications.  But to provide 100% of the 
functionality would require 100% of the costs too.  In most countries, ISPs are under 
immense competitive pressures.  This makes it almost impossible to introduce radical 



changes to the network to support very demanding applications.  In fact, even if ISPs 
wanted to introduce a new network architecture, the network effect makes it infeasible:  
early adopters pay all of the costs up front, but gain no benefits until other networks also 
upgrade.  Such network effects are responsible for the very slow uptake of IPv6 for 
example, even though there is general agreement that an IPv6 world would be a better 
place.   

The inevitable consequence is that the way the core network (layers 3 and 4 in the stack) 
changes is through accretion of point solutions that provide immediate benefits to the 
organisation paying the bill.  One example of a point solution is a firewall.  Deployed at a site 
border, a firewall provides immediate benefit to the hosts within the site, protecting them 
from a wide range of unwanted traffic.  The site network itself also becomes more 
manageable, as the network manager now has slightly more control over the traffic on his 
network.  In short, a firewall increases the robustness and predictability of the site’s 
network, even though every network operator knows that a firewall is not a complete 
security solution.  Another example of a point solution is the use of deep-packet inspection 
(DPI) boxes to classify and rate-limit traffic from certain applications.  In the UK, for 
example, DPI has become nearly ubiquitous over the last couple of years, as the fiercely 
competitive home broadband market has struggled to cope in the face of falling prices and 
the rise of applications such as BitTorrent that can crowd out conventional applications and 
make quality of service intolerable for latency-sensitive traffic such as telephony and 
games.   

The deployment of various forms of flow-aware equipment in the network to improve the 
service seen by important or common applications seems both inevitable and unstoppable.  
Such technologies do indeed improve the performance of the network.  But the downside is 
that application knowledge is increasingly being embedded within the network.  An arms 
race has emerged, where operators trying to manage their networks deploy equipment to 
improve service, either by penalizing “bad” traffic or by enhancing “good” traffic.  
Application writers then strive to make their traffic look “good”.  This is clearly a race to the 
bottom, where it becomes increasingly hard to deploy new applications that do not look 
exactly like existing ones.   

A key part of the problem is that the Internet is fundamentally stupid; this is both its great 
virtue and its key failing.  Although an end-to-end transparent IP network allows huge 
innovation in applications and protocols, it also means that the Internet does not actually 
know when it is working.  Obviously if packets are not moving then something is wrong, but 
the network can be moving huge numbers of packets while providing no useful service to 
its customers: an extreme example is a denial-of-service attack that floods a link with so 
much traffic that no useful work is done. However, even in less extreme cases it is hard to 
reason about whether the packet–level service being provided is sufficient for the 
applications using the network, especially given that the applications of today need not be 
the applications of tomorrow. 

The trend is clear: the Internet can be improved by embedding application knowledge in 
the network to improve robustness, quality of service, and manageability. The problem is 
that in doing so, we lose the benefits of generality that led to the success of the Internet in 



the first place.  A packet-switched network that can only support applications that look like 
today’s applications is a poor solution – it has all the disadvantages of packet switching (it is 
still not as robust or predictable as a dedicated network would have been), together with all 
the disadvantages of a dedicated network (e.g., higher management and operating costs, 
inability to support new applications, etc).   

 

It is against this background of increasing demands being placed on the network (VoIP, TV, 
games), and increasing embedded knowledge in the network, optimizing today’s 
applications at the expense of tomorrow’s, that we propose CHANGE. 

The CHANGE Concept:  Architecture for Innovation 

Our goal is simple: to reinvigorate innovation on the Internet.  Achieving this goal requires a 
careful balance of the principled and the pragmatic.   

Whether we would like it or not, there is no returning to the original end-to-end 
transparent Internet architecture.  Quite simply there are just too many reasons why 
processing of data flows needs to be performed within the network, not just in the end-
systems.  To enable innovation, we need to play to the strengths of both packet-switching 
and flow processing, rather than being religiously in one camp or the other.  We 
fundamentally believe in the advantages of a packet-switched Internet.  What are missing are 
the primitives to introduce flow-processing at selected key points in the network. This flow 
processing needs to be done not as implicit hacks, but in a way that makes it a first class 
object in the network.  If done right, we believe this will allow operators and application 
writers to reason about the emergent behaviour of the end-to-end path through such a 
network.   

We believe the deployment of a general purpose flow-processing architecture is what is 
required to break the innovation log-jam that has been developing over the last fifteen 
years.  This is the overall goal of the project. 

What, precisely, is flow processing?  Flow processing is any manipulation of packets where 
the service given to those packets is different because they are part of a flow of packets.  
Flows can be of different granularities: a single TCP connection might comprise a flow, but 
equally all the traffic between two sites might comprise an aggregate flow, or all the 
Internet telephony traffic traversing a router might comprise a flow.  The concept of a flow 
is thus very general, but what flow processing has in common is that it requires the 
maintenance of some measure of flow state in the network. 

The processing that might be applied to flows is very varied.  At one extreme, flow 
processing might involve providing lower-latency forwarding to traffic in a flow. At the 
other extreme, it might involve the reassembly of the contents of a packet stream and 
parsing of application-level content to perform network intrusion detection, or explicit 
authentication to a site firewall to allow subsequent packets of a flow to proceed. 

 



Enabling Flow Processing 

To enable innovation, it must be possible to support a wide range of flow processing.  At the 
same time we want to allow rapid innovation and deployment of new flow processing 
primitives so that flow processors are not locked into the applications of today.  Essentially 
this means that anything more than simple packet forwarding should be a software 
function, allowing quick deployment.  Contrast this with the current Internet, where flow 
processing is almost always performed in special purpose boxes sold by vendors to solve a 
specific problem. 

Several trends have come together recently to transform this general vision from fantasy 
into what can be a practical reality.  First, general-purpose x86 server hardware has 
become cheap enough and powerful enough for packet processing at rates of up to 
20Gbit/s.  The combination of PCI-Express, Gigabit or 10-Gigabit Ethernet supporting 
virtual queuing, CPUs with many cores, and high-bandwidth NUMA systems architectures, 
has resulted in low-costs systems that have been optimized for high-performance network 
processing as servers.  These machines are equally at home performing network processing 
of flows.  They have also been optimized for virtualization, which allows a single machine to 
perform flow processing on behalf of more than one organization.   Secondly, high-
performance Ethernet switch chipsets have become a low-cost commodity item.  Such 
chipsets have flow-processing capabilities: they can typically perform matching and 
forwarding based on arbitrary combinations of packet header fields, and also support 
multipath forwarding which can be used for hash-based load-balancing across multiple 
output ports.  Current commodity chipsets can support flow tables containing tens of 
thousands of flows.  OpenFlow [OPENFLOW] takes advantage of these chipsets by providing 
a common API to control flow processing in these switches.   

Combining OpenFlow-style switches with clusters of commodity servers allows powerful 
and scalable platforms to be built [FLOWSTREAM].  The switch provides the first level of 
classification, and balances traffic directly across virtual queues on the servers, allowing 
traffic to be directed to specific CPU cores for more sophisticated processing.  Such a 
hardware platform provides a very powerful, scalable and flexible base on which to build a 
flow processing system.   An enabling goal of CHANGE is to build upon preliminary work on 
these platforms, with the goal of building flow processing systems that can take full 
advantage of the flexibility inherent in such a hardware platform. Such a platform has 
several advantages: 

A) The ability to scale up processing by merely adding more inexpensive servers  
B) The ability to scale down processing by concentrating load on a few boxes at quiet 

times to save power consumption  
C) The ability to roll out new flow processing functionality at short notice to handle 

unexpected problems, or take advantage of unexpected opportunities, with only 
software reconfiguration required.  

D) The ability to support a wide range of functionality thanks to relying on general-
purpose hardware and operating systems  

E) The ability to dynamically shift processing between flow processing servers  



F) The ability to concurrently run different kinds of processing on different sets of 
flows while providing high performance and fairness guarantees 

 

Figure 1  Flow processing platform 

 

Figure 1 illustrates a realization of a flow processing platform, built out of several 
programmable switches (e.g. OpenFlow switches) interconnecting commodity servers 
supporting virtualization of processing functions, under the control of the platform 
controller. Flow processing platforms built in this way have inherent benefits for early 
adopters, even if no other site deploys them; this avoids the chicken-and-egg problem that 
affects most proposals for architectural change.  However, the goal of CHANGE is not merely 
to propose an effective way to build end-sites such as data-centers, though that is a first 
step. The real vision of CHANGE is to build upon this underlying flexible flow processing 
capability to enable network-wide innovation. 

A Network Architecture for Innovation 

The broader objective of CHANGE is to use flow processing platforms to enable the Internet 
to reason about flows and to enhance the processing flows receive in a manner that enables 
innovation rather than stifles it.  

The first step to doing this is to enable rapid deployment of flow processing software into 
flow processing platforms.  This requires that deploying such software can be done safely 
and in a way that does not adversely impact other traffic using that flow processing 
platform. 



However, we envisage the main advantages will come when flow processing platforms can 
communicate with each other and with the end systems themselves.  For simplicity, it is 
convenient to consider two different ways in which flow processing platforms can work 
together to enable innovation: 

Virtual networks:  Flows can be classified and processed in one flow processing platform, 
then sent to another flow processing platform for further processing, and so on.  
Typically this will be done by tunnelling traffic across the Internet. Such flow-level 
virtual networks give operators and application writers great flexibility in controlling 
how their traffic is forwarded and where it is processed. This is in stark contrast to the 
current Internet architecture, where networks process traffic based only on 
destination address prefixes. 

On-path flow processing:  Traffic traversing the network using conventional IP 
forwarding needs to be processed as a flow at certain points in the network; examples 
are firewalls and traffic shapers.  The kind of flow processing platforms we envisage 
can provide this conventional functionality, but the real benefits come when such flow 
processing platforms can communicate.  This allows applications to express their 
requirements, networks to express their constraints, and a much more flexible 
approach to enabling access control restrictions to be taken.  Thus an additional goal 
of CHANGE is to investigate signalling mechanisms by which this communication can 
occur. 

In reality, we envisage these two different concepts, virtual networks and on-path flow 
processing, to be commonly used in combination, but conceptually they are separate, and 
the project will address both. 

 



 

Figure 2  Internet level flow processing 

 

Figure 2 shows some of the possible use of network-wide flow processing. On-path 
processing uses flow processing platforms very close to the natural IP forwarding path of 
the packets, essentially coupling with standard IP routers to realize "super nodes". In 
virtual networks, the flow processing capabilities are overlaid atop the standard Internet; in 
the case where part of the virtual network is realized on a discrete, separate clean-slate 
infrastructure, the flow processing platforms can provide an extension of this new 
infrastructure within the existing Internet, thus greatly extending its reach. 

When designing a new technology, especially a technology with as many diverse uses as 
networking, it would be an act of hubris to believe that we understand all the ways in which 
that technology will be used.  The goal of a network architecture is to allow different 
requirements to play out differently in different places, while still having a sufficiently 
rigorous framework of common assumptions.  We believe that adding flow processing 
platforms to the Internet satisfies this balance between enabling new functionality without 
removing the common assumptions that have made the current Internet so successful. 

In the original Internet architecture, in-network processing is limited to IP forwarding.  Out 
of commercial necessity, the current Internet has implicitly extended this to allow various 
forms of implicit in-network processing, but without adequately defining the place in the 



architecture that such processing occupies.  We believe that economic pressures will only 
exacerbate this trend, but the vendors of middle-boxes are ill-placed to take a large enough 
picture view to extend the architecture itself.  In fact no single vendor, or even consortium 
really is well placed to do this.   

The goal of CHANGE is not to move from one well-defined old architecture to one well-
defined new architecture.  Rather, the goal is to provide an enabling platform on which new 
functionality can be rapidly defined, and then to provide sufficient architectural building 
blocks that give a common frame of reference for future designers.   

The intent is that different operators and vendors will each enhance the Internet 
architecture in their own way, but only for their subset of the traffic.  We do not claim 
insight into all the future ways that the network can be extended using these building 
blocks; instead, to validate our design choices we will implement a number of our own 
sample applications that stress the current Internet architecture in different ways. 

2 Objective 

 

The CHANGE consortium will collaboratively work towards the following objectives: 

1. Design and specification of an architecture for innovation 
2. Design and development of flow processing platforms 
3. Architecture implementation 
4. Architecture validation through application development 
5. Dissemination of results 


